

2

according to the laws of conservation of energy and to

the laws of Fresnel for reflection and refraction of

light. The ambient, diffuse and specular terms in the

equation of light are calculated according to these

laws taking into account each layer of the skin.

ambient_color = (Cdiffuse*0.5* Fresnel * fvAmbient

 + Cscatter1*0.4* Fresnel * fvAmbient

 + Cscatter2 *0.1* Fresnel * fvAmbient);

diffuse_color = ((

Cdiffuse*0.5 * Fresnel * fvDiffuse * fvLightColor

+ Cscatter1*0.4* Fresnel * fvDiffuse *fvLightColor

+ Cscatter2 *0.1* Fresnel * fvDiffuse *fvLightColor))

* lerp(vec4(1.0), Cdiffuse*lum, 0.1);

specular_color = (Cdiffuse*0.5 * fvSpecular

+ Cscatter1*0.4* Fresnel * fvSpecular

+ Cscatter2 *0.1* Fresnel * fvSpecular) +

((specularity));

Each term is based on a weighted average of the input

textures.

Cdiffuse * 0.5 + Cscatter1*0.4 + Cscatter2 *0.1;

For the specular term in the sub surface scattering

simulation a Gaussian Noise texture is used as a noise

factor on the bump calculus to add realism.

Figure 3 The Gaussian Noise Texture

For the specular term in the sub surface scattering

simulation a Gaussian Noise texture is used as a noise

factor on the bump calculus to add realism.

The pure specularity of the skin must be white, and it

is calculated separately and multiplied by the noise

texture.

specularity = fvSpecular * (pow(fRDotV,

fSpecularPower)) * fNDotL * Cnoise ;

The final color is a sum of ambient color, diffuse color,

specular color and the specularity.

final_color = ambient_color + diffuse_color +

specular_color + specularity ;

Figure 4 The Real time Rendering of this algorithm :

Front view.

Figure 5 The Real time Rendering of this algorithm :

Rear view.

Figure 6 The Real time Rendering of the basic concept of

this algorithm inside a WebGL implementation.

3

5. CONCLUSIONS

This paper introduce an algorithm for real time

rendering of the human skin in texture space for game

development. Future works can explore the possibility

for the calculus of translucent surfaces such as the

ears and nostrils of the nose, the implementation of a

skin shader inside an HDR pipeline simulation and the

exploration of a screen space method for the sub

surface scattering calculation .

6. REFERENCES

1. Fabien Houlmann, Stéphane Metz, High Dynamic Range

Rendering in OpenGL;

2. Larry Gritz, Eugene d'Eon, GPU Gems 3, Chapter 24. The

Importance of Being Linear;

3. Eugene d'Eon, David Luebke, GPU Gems 3 Chapter 14.

Advanced Techniques for Realistic Real-Time Skin

Rendering;

4. Borshukov, G; Lewis, J. P. (2005). "Realistic human face

rendering for "The Matrix Reloaded"". Computer

Graphics (ACM Press);

5. Eugene d'Eon, E (2007). "Advanced Skin Rendering". GDC

2007;

6. Jimenez, J., Sundstedt, V., and Gutierrez, D. 2009. Screen-

Space perceptual rendering of human skin. ACM Trans.

Appl. Percept. 6, 4, Article 23 (September 2009), 15

pages.

