

1

REAL-TIME SKIN SHADER IN GLSL
Massimo Maj

www.mixmax3d.it

School of Medicine and Surgery

Technical, Scientific-Technical and data processing

University of Milan-Bicocca

ABSTRACT

This paper presents an approach through OpenGL

shading language for the rendering of human skin for

game development. This method works in texture

space so it requires an initial work for the creation of

the images that are used for the simulation of the sub

surface scattering effect.

The final image consists of a weighted average of the

input images, the algorithm calculate this average

trying to simulate the effect of the light scattering

through the layers of the skin.

1. INTRODUCTION

The light model used for the calculation of the light

contribution is based on the classic per-pixel bump

mapping algorithm used in the example of the

RenderMonkey software library, that simulate one

point directional light. The vertex shader of the

pipeline calculates per-pixel Light Direction and View

Direction working on the position, normal, bi-normal

and tangent of the geometry.

ViewDirection.x = dot(Tangent, ViewDirection);

ViewDirection.y = dot(Binormal, ViewDirection);

ViewDirection.z = dot(Normal, ViewDirection);

LightDirection.x = dot(Tangent, LightDirection.xyz);

LightDirection.y = dot(Binormal, LightDirection.xyz);

LightDirection.z = dot(Normal, LightDirection.xyz);

Those values are passed to the fragment shader.

2. INPUT TEXTURE

While I have been searching for previous works on this

argument I found that a current approach used in the

major 3d software like Autodesk Maya they use a

three layered model for the calculation of the skin

shader, the model is a combination of a dermal layer,

a epidermal layer and a sub-dermal layer. The three

layer can be drawn using a painting package using the

diffuse/dermal layer as a base and adjusting the final

color using a filter approach.

Figure 1 The Three layers of the skin with the normal map

for specular calculation rendered on a HD geometry of a

human head

3. GAMMA CORRECTION

First of all each color contribution is linearized through

gamma correction for an appropriate use on different

devices. A dedicated function in the fragment shader

makes the work on each texture sampler.

Final_color = pow(Color,2.2);

4. THE OPENGL LIGHTING MODEL

According to the OpenGL specifications the lighting

model works on three terms to simulating the light :

ambient, diffuse and specular. In this method each

term is a color in the RGB format and is multiplied for

each layer of the skin. A physical method for the

calculation of skin sub surface scattering must works

Figure 2 The three images painted for the simulation:

diffuse/dermal, epidermal and sub-dermal.

2

according to the laws of conservation of energy and to

the laws of Fresnel for reflection and refraction of

light. The ambient, diffuse and specular terms in the

equation of light are calculated according to these

laws taking into account each layer of the skin.

ambient_color = (Cdiffuse*0.5* Fresnel * fvAmbient

 + Cscatter1*0.4* Fresnel * fvAmbient

 + Cscatter2 *0.1* Fresnel * fvAmbient);

diffuse_color = ((

Cdiffuse*0.5 * Fresnel * fvDiffuse * fvLightColor

+ Cscatter1*0.4* Fresnel * fvDiffuse *fvLightColor

+ Cscatter2 *0.1* Fresnel * fvDiffuse *fvLightColor))

* lerp(vec4(1.0), Cdiffuse*lum, 0.1);

specular_color = (Cdiffuse*0.5 * fvSpecular

+ Cscatter1*0.4* Fresnel * fvSpecular

+ Cscatter2 *0.1* Fresnel * fvSpecular) +

((specularity));

Each term is based on a weighted average of the input

textures.

Cdiffuse * 0.5 + Cscatter1*0.4 + Cscatter2 *0.1;

For the specular term in the sub surface scattering

simulation a Gaussian Noise texture is used as a noise

factor on the bump calculus to add realism.

Figure 3 The Gaussian Noise Texture

For the specular term in the sub surface scattering

simulation a Gaussian Noise texture is used as a noise

factor on the bump calculus to add realism.

The pure specularity of the skin must be white, and it

is calculated separately and multiplied by the noise

texture.

specularity = fvSpecular * (pow(fRDotV,

fSpecularPower)) * fNDotL * Cnoise ;

The final color is a sum of ambient color, diffuse color,

specular color and the specularity.

final_color = ambient_color + diffuse_color +

specular_color + specularity ;

Figure 4 The Real time Rendering of this algorithm :

Front view.

Figure 5 The Real time Rendering of this algorithm :

Rear view.

Figure 6 The Real time Rendering of the basic concept of

this algorithm inside a WebGL implementation.

3

5. CONCLUSIONS

This paper introduce an algorithm for real time

rendering of the human skin in texture space for game

development. Future works can explore the possibility

for the calculus of translucent surfaces such as the

ears and nostrils of the nose, the implementation of a

skin shader inside an HDR pipeline simulation and the

exploration of a screen space method for the sub

surface scattering calculation .

6. REFERENCES

1. Fabien Houlmann, Stéphane Metz, High Dynamic Range

Rendering in OpenGL;

2. Larry Gritz, Eugene d'Eon, GPU Gems 3, Chapter 24. The

Importance of Being Linear;

3. Eugene d'Eon, David Luebke, GPU Gems 3 Chapter 14.

Advanced Techniques for Realistic Real-Time Skin

Rendering;

4. Borshukov, G; Lewis, J. P. (2005). "Realistic human face

rendering for "The Matrix Reloaded"". Computer

Graphics (ACM Press);

5. Eugene d'Eon, E (2007). "Advanced Skin Rendering". GDC

2007;

6. Jimenez, J., Sundstedt, V., and Gutierrez, D. 2009. Screen-

Space perceptual rendering of human skin. ACM Trans.

Appl. Percept. 6, 4, Article 23 (September 2009), 15

pages.

